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1 Introduction

The Boltzmann equation, introduced in 1872 by Ludwig Eduard Boltzmann [10], provides a model for
rare�ed gas dynamics that has paved the way to a �ourishing litterature exploring the corresponding
mesoscopic scale. In fact, this kinetic representation may be used as an intermediate step in the
derivation of �uid mechanics equations (see among many others [4, 5, 17, 25]) and has permitted
various numerical applications [31, 15], along with a theoretical comprehending of the intrinsic be-
havior of such rare�ed gases. Indeed, very soon after the equation's formulation, introducing the
concept of entropy, Boltzmann has shown that the solutions to this equation irreversibly converge,
for long times, towards an equilibrium. This equilibrium is well known: it is uniform in space and
distributed according to the Maxwell Gaussian distribution (8) in velocities, which depends only on
the temperature of the system.

On the other hand, the microscopic state of the gas, from which the Boltzmann equation is
derived in the very low density limit, is given by classical Newton equations, and the solutions
to such equations are completely time reversible; this seeming paradox naturally led Boltzmann's
contemporaries into doubting the validity of his model. Nevertheless, the rigorous derivation of
this mesoscopic Boltzmann equation from microscopic Newton equations has eventually been proved
mathematically in 1975 by Oscar Erasmus Lanford III [19, 20] in the case of hard sphere interactions;
but the methods he used su�er from a strong ridigity that hinders to extend his result for long time
scales. In fact, his proof is only valid for very small times, when only about a �fth of particles
have collided. The major obstruction is the correlation that happens when two particles collide: the
system's chaotic properties deteriorate over time, making it very hard to deal with any recollision of
particles.

Nonetheless, close to thermodynamic equilibrium, the statistical stability of the dynamics guar-
antees the propagation of a certain amount of chaos and provides a control of correlations in a very
strong sense. Hence, in the Rayleigh gas model, describing the behavior of a small fraction of tagged
particles near equilibrium [26], a very similar proof leads to the derivation for long time scales of a lin-
ear version of the Boltzmann equation, called Rayleigh�Boltzmann equation; this has been the work
of Henk van Beijeren, Lanford, Joel Louis Lebowitz and Herbert Spohn in 1980 [29], later completed
in 1982 with applications to color-changing boundary conditions [21].

A few decades later, in 2013, Isabelle Gallagher, Laure Saint-Raymond and Benjamin Texier re-
opened the work of Lanford and his former student, Francis Gordon King [18], �lling some gaps
including the case of compactly supported potentials, and hence providing precise estimates on the
convergence rate in Lanford's theorem. Eventually, this work has led in 2016 to an article by Thierry
Bodineau, Gallagher and Saint-Raymond on the convergence rate in the linear case, and its depen-
dence on the long time scaling, so as to infer Brownian hydrodynamic limits [7].

Afterwards, these authors joined by Sergio Simonella have also studied the strict linearization of
the Boltzmann equation, also proving results on long time scales [8, 9] with very similar methods using
a speci�c time cutting, although more sophisticated so as to capture more rare dynamics involved
in �ne correlations between particles. The new adaptive pruning method introduced in the present
paper and evoked in the following paragraph is based on this existing time cutting method and might
therefore also be adapted to these previous works.

Indeed, this paper is dedicated to an improvement of the convergence rate for the Rayleigh gas
model [7], which represents more than an exponential gain, along with the correction of a few inac-
curacies, some of which having already been the subject of an erratum to the 2013 paper. Here, to
obtain this better convergence rate, the main idea happens in the pruning process: the dynamics is
written in terms of collision trees that are truncated at speci�c times so as to get reasonable bounds,
and the error due to this truncation is the biggest one appearing in the proof. The original article [7]
used to cut these trees at regular intervals, but choosing a dividing more adapted to the situation
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greatly reduces this error. This kind of idea is frequent in the literature: compare for example the
uniform cutting of the frequency space in the article of Hajer Bahouri and Jean-Yves Chemin [3] and
the more adapted cutting by Daniel Tataru [28, Figure 1], yielding more precise Strichartz estimates
for a quasilinear wave equation. Also note that such a pruning method is also used in other kinetic
models, like for example the derivation of Fick's law from the Lorentz gas [6]. Hence, for our problem,
while the previous convergence result could hardly have a physical meaning � as it yielded a rate in
(log logN)−1 � the new one is much more satisfying with a rate approaching exp(−c logN) = N−c.

Furthermore, while this rate was degrading with the time horizon in the original article [7], it is
now completely independent of the time parameter, as soon as this horizon t is chosen small enough
compared with the number of particles N . This dependence between t and N appears so as to handle
the pruning process, and leads us to impose the same hydrodynamic scaling as in [7]: we only improve
the kinetic scaling. In the case of an ideal Rayleigh gas, Karsten Matthies and Theodora Syntaka
proved convergence for much longer times [23] (see the discussion in Section 5.2).

The main theorem is stated in Section 3 and its proof is the subject of Section 4, �rst precising
one of the original paper's estimates, then getting a better bound on the pruned-out term, and
eventually concluding by tuning �nely the pruning parameters' scaling. Section 2 starts by recalling
the framework and preliminary results. Eventually, Section 5 presents better results obtained by this
method when simplifying the hypotheses in two di�erent ways.

2 Modelling a tagged particle in a gas at equilibrium

2.1 Microscopic model

The state of the gas of N particles that we study is completely determined by the position (in the
d-dimensional torus Td) and the velocity of each particle, represented by the vector

zN = (z1, . . . , zN )
.
= (xN , vN ) ∈ DN .

= (Td × Rd)N . (1)

The hard sphere model consists in an exclusion condition, which states that two particles cannot get
closer than a certain diameter ε � so that we work with the following restricted open domain

Dε
N = {zN ∈ DN ; ∀ i ̸= j, |xi − xj | > ε}. (2)

Within Dε
N , the particles' dynamics is given by Newton equations for uniform line movement, i.e.

dxi
dt

= vi,
dvi
dt

= 0. (3)

Conversely, on the boundary of Dε
N , at least two particles are in contact. For instance, for the

collision of the pair of particles (i, j), we hence have |xi − xj | = ε. In this hard sphere model, the
interaction is instantaneous and elastic. If the scalar product (xi − xj) · (vi − vj) is positive, the
uniform line movement is well-de�ned, but otherwise the post-collisional velocities (vi

′, vj
′) are given

by the following system, as pictured in Figure 1,
vi

′ = vi −
1

ε2
[(vi − vj) · (xi − xj)] (xi − xj)

vj
′ = vj +

1

ε2
[(vi − vj) · (xi − xj)] (xi − xj).

(4)

Finally, we consider fN (t, · ) the probability density of presence of particles on the phase space Dε
N at

time t ≥ 0, which must be symmetrical by exchangeability of the particles. The microscopic dynamics
provides the Liouville transport equation for fN on Dε

N

∂tfN + vN · ∇xN
fN = 0, (5)
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with the following boundary condition on the post-collisional states:

|xi − xj | = ε and (xi − xj) · (vi − vj) > 0 ⇒ fN (zN )
.
= fN (z⋆N ), (6)

where z⋆N = (z1, . . . , xi, vi
⋆, . . . , xj , vj

⋆, . . . , zN ) denotes the pre-collisional state associated to zN . The
dynamics is well-de�ned in these terms, up to a set of initial con�gurations of measure zero, as proved
by another one of Lanford's students, Roger Keith Alexander [1, 14].

Other models implying di�erent potentials of interaction have been studied, short-range [14] or
long-range [12, 2]. For a complete review of collisional kinetic theory, see the one by C�edric Villani [30].

2.2 Nonideal Rayleigh gas and linear Boltzmann equation

The kinetic limit we consider is called the low density limit, or Boltzmann�Grad limit, and consists in
letting the number of particles N go to in�nity while keeping a constant mean free path N−1ε1−d = 1,
so that the particles' diameter ε goes to 0. In this limit, assuming initial chaos, the previously exposed
framework usually leads to the Boltzmann equation, at least for short times [19, 14].

In this paper, like in the original article [7], we choose initial conditions close to equilibium to
retrieve a linear version of the Boltzmann equation, whose theory is much simpler and hence might
be derived for long time scales. More precisely, we consider the nonideal Rayleigh gas model [26]:
we choose to tag the �rst particle, breaking the symmetry that was previously stemming from the
particles' exchangeability, and we consider the initial condition

fN (0, zN ) =
1Dε

N
(zN )

ZN
ρ(x1)M

⊗N
β (zN ), (7)

where ρ is a continuous space perturbation on the torus, ZN is a normalization constant, and Mβ

denotes the equilibrium Maxwell state

Mβ(x, v)
.
=

(
β

2π

)d/2

exp

(
−β

2
|v|2
)
. (8)

The parameter β stands for an inverse temperature, tuning the intensive (kinetic) energy of the
system. We take interest in the marginals of fN , de�ned for n ≤ N as

f
(n)
N (t, zn)

.
=

∫
DN−n

fN (t, zn, zn+1, . . . , zN )1Dε
N
(zN )dzn+1 . . . dzN . (9)

Then, in the Boltzmann�Grad limit, the �rst marginal f
(1)
N behaves like the solution g

.
= Mβφ to the

linear Rayleigh�Boltzmann equation [7], where

∂tφ+ v · ∇xφ =

∫
Sd−1

∫
Rd

[φ(v⋆)− φ(v)]Mβ(vc) [ω · (vc − v)]+ dvcdω, (10)

with initial condition
φ(0, x, v) = ρ(x). (11)

Throughout this paper, we simply denote ∥ρ∥ .
= ∥ρ∥L∞(Td). This linear equation (10, 11) is globally

well-posed in L∞(Td × Rd), and becomes a linear heat equation in the hydrodynamic limit [7].
Some partial results exist for this same model with long-range interactions instead of hard sphere

collisions [12, 2], yet the complete derivation of the Rayleigh�Boltzmann equation for general po-
tentials is still an open problem. Other ways to derive the linear Rayleigh�Boltzmann equation for
long time scales are the ideal Rayleigh gas model, in which the particles at equilibrium don't interact
among themselves [13, 22, 24], and the Lorentz gas model, which consists in letting a tagged particle
evolve in a frozen random background [27, 11, 16].
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3 Improved convergence rate of the �rst marginal

As announced in the previous sections, the following theorem provides a convergence rate of the
density's �rst marginal � which corresponds to the tagged particle � to the solution of the Rayleigh�
Boltzmann equation. This is exactly the same convergence as in [7], yet the rate depending on the
number of particles N = ε1−d has been improved, from an error of order (log logN)−1 to an error of

order exp
(
−cβ |logN |1−α

)
for any α > 0, which is an improvement by more than an exponential.

Theorem 3.1 (Convergence to the Rayleigh�Boltzmann density). There exists a constant cβ depend-

ing only on the temperature and the dimension such that, for any α ∈ (0, 1/2), as long as

t ≲ (log |cβ log ε|)
1
2
−α , (12)

one has � for ε small enough � the following convergence rate of the BBGKY distribution's �rst

marginal to the linear Boltzmann density, in the low density limit N = ε−(d−1) → ∞,∥∥∥f (1)
N − g

∥∥∥
L∞([0,t]×Dd)

≤ ∥ρ∥ exp
(
−cβ |log ε|1−α

)
. (13)

The notation t ≲ (log |cβ log ε|)
1
2
−α means that, for a good constant c > 0 depending only on the

dimension d and the inverse temperature β, one has

t ≤ c (log |cβ log ε|)
1
2
−α . (14)

The proof of this theorem is the subject of Section 4. The main idea happens in the pruning pro-
cess, which consists in removing the trajectories containing too many collisions at certain intermediate
times. Note that although we managed to get rid of the time dependence in the convergence rate, the

time scaling does not get better than in the original article [7] and remains of order (log |cβ log ε|)
1
2
−α ,

so that the scaling of the hydrodynamic limit in [7] does not get improved either. Indeed, one may
see in the pruning process (Proposition 4.2.1) that the length of the time horizon t is deeply coupled
to the pruning parameter K which cannot get too large compared to N (see Proposition 4.3.1).

4 Adaptive pruning and proof of the convergence rate

This section is dedicated to the presentation of a tree pruning tuned adaptively in time, so as to
improve the convergence rate which could be found in the original article [7], as stated in Theorem 3.1.
Let us recall the notation and general framework of our study. We have the following hierarchy on
the marginals of the density fN , called BBGKY hierarchy and de�ned in Boltzmann's lectures [10] ,
in the form of a Dyson expansion

f
(n)
N (t) =

N−n∑
s=0

Qn,n+s(t)f
(n+s)
N (0), (15)

where the successive-collision operators are given by

Qn,n+s(t)
.
=

∫ t

0

∫ t1

0
· · ·
∫ ts−1

0
Θn(t− t1)CnΘn+1(t1 − t2)Cn+1 . . .Θn+s(ts)dts . . . dt1, (16)

and are written in terms of Θn, the operator associated to the free transport with collisions in Dε
n

with specular re�ection (see for example [30] for details on this operator's de�nition), and in terms
of the elementary collision operators de�ned as follows

Cnf
(n+1)
N (zn)

.
= (N − n)εd−1

n∑
i=1

∫
Rd

∫
Sd−1

ω · (vn+1 − vi)f
(n+1)
N (zn, xi + εω, vn+1)dωdvn+1. (17)
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All of these operators have a formal limit version in the Boltzmann�Grad limit, where (N − n)εd−1

converges to 1, while ε goes to 0. They easily satisfy the same estimates as their BBGKY counterparts,
estimates that are presented in the following sections.

4.1 A continuity estimate on the successive-collision operators

We introduce the total kinetic energy

Hk(vk) =
1

2

k∑
i=1

|vi|2, (18)

and for λ > 0 holding the role of an inverse temperature and k ∈ N∗, we consider the space Fε,k,λ of
measurable functions de�ned almost everywhere on the restricted domain Dε

k such that

∥fk∥ε,k,λ
.
= supess

zk∈Dε
k

∣∣∣fk(zk) exp(λHk(vk))
∣∣∣ < ∞. (19)

The marginals of fN belong to this space for λ = β, as stated in [7], with

sup
t⩾0

∥f (k)
N (t)∥ε,k,β ≤ sup

zk∈Dε
k

M⊗k
β (vk) exp

(
βHk(vk)

)
∥ρ∥ = ∥ρ∥

(
β

2π

) kd
2

· (20)

This bound is very strong and speci�c to the linear case: it is valid for all times and this is the reason
why we can derive linear results on long time scales; in the non-linear case the a priori bounds were
only valid for very small times [14].

The following proposition is very similar to its equivalent in the original article [7, Lemma 4.2];
it is simply a little bit more general concerning the degrading rate of the norm: indeed, the idea
is to show a continuity estimate between two of the spaces de�ned above for di�erent temperature
parameters, degrading this parameter so as to resorb a factor |v| by a fraction of the sub-Gaussian
decreasing at in�nity, which is precisely tuned by the temperature in the considered spaces. This
continuity estimate, along with the bound on the marginals (20), justify the convergence of the
Dyson expansion (15) in Fε,s,β/2 for times t ≥ 0 small enough.

Proposition 4.1.1 (Continuity of the successive-collision operators).
There exists a constant Cd depending only on the dimension such that for all n, s ∈ N∗ and all

times t > 0, if fn+s ∈ Fε,n+s,λ, then for every b ≥ 2, we have

Qn,n+s(t)fn+s ∈ Fε,n,λ(1− 1
b )
, with

∥∥∥Qn,n+s(t)fn+s

∥∥∥
ε,n,λ(1− 1

b )
≤ en

(√
b Cdt

λ(d+1)/2

)s

∥fn+s∥ε,n+s,λ.

(21)

Proof. First of all, let us observe that the transport operators preserve all of the weighted norms
(∥ · ∥ε,n,λ)n,λ, since the weight depends only on the kinetic energy of the system.

Then, for j ≤ N , using that (N − j)εd−1 ≤ 1 in our scaling, let us compute for fj+1 ∈ Fε,j+1,λ,
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making its norm appear,∣∣∣Θj(−τ)CjΘj+1(τ)fj+1

∣∣∣ ≤ ∣∣∣∣∣Θj(−τ)

j∑
i=1

∫
ω · (vj+1 − vi)Θj+1(τ)fj+1(zj , xi + εω, vj+1)dωdvj+1

∣∣∣∣∣
≤

j∑
i=1

∫
Sd−1×Rd

(|vj+1|+ |vi|)∥fj+1∥ε,j+1,λ exp
[
−λHj+1(vj+1)

]
dωdvj+1

= |Sd−1| · ∥fj+1∥ε,j+1,λ

j∑
i=1

∫
Rd

(|vj+1|+ |vi|) exp

[
−λ

2

j+1∑
k=1

|vk|2
]
dvj+1.

The latter integrals may be written explicitly, up to constants depending only on the dimension d,

after a radial change of variable and a dilation by λ− 1
2 ,∫

(|vj+1|+ |vi|) exp

[
−λ

2

j+1∑
k=1

|vk|2
]
dvj+1 = Cd

∫
(r + |vi|) exp

[
−λ

2

j∑
k=1

|vk|2
]
rd−1e−

λ
2
r2dr

= Cd exp
[
−λHj(vj)

] (
cd
√

λ−(d+1) + |vi|c̃d
√
λ−d

)
. (22)

This way, applying this to fn+s, summing (22) over i and accepting to downgrade by λ/bs the
considered norm so as to later resorb the factors |vi|, we get that∥∥∥Θn+s−1(−ts)Cn+s−1Θn+s(ts)fn+s

∥∥∥
ε,n+s−1,λ−λ/bs

≤ C̃d

(
(n+ s− 1)

√
λ−(d+1) +

√
λ−d

n+s−1∑
i=1

|vi|

)
exp

[
− λ

2bs

n+s−1∑
k=1

|vk|2
]
∥fn+s∥ε,n+s,λ.

(23)

But using the Cauchy�Schwarz inequality and the fact that xe−x ≤ e−1 for any x ≥ 0 we have(
n+s−1∑
i=1

|vi|

)
exp

[
− λ

2bs

n+s−1∑
k=1

|vk|2
]
≤
(
(n+ s− 1)bs

λ

) 1
2

(
n+s−1∑
i=1

|vi|2
λ

bs

) 1
2

e−
λ

2bs

∑n+s−1
k=1 |vk|2

≤ (n+ s)

√
b

λe
, (24)

so that (23) yields∥∥∥Θn+s−1(−ts)Cn+s−1Θn+s(ts)fn+s

∥∥∥
ε,n+s−1,λ−λ/bs

≤ Ĉd(n+ s)
√
bλ− d+1

2 ∥fn+s∥ε,n+s,λ. (25)

To retrieve Qn,n+s(t), we have to iterate this calculus s times, downgrading the norm parameter by a
factor (1− 1/bs) at each step. At the i-th iteration, the factor in the right-hand side of (25) becomes

Ĉd(n+ s)
√
b[λ(1− 1/bs)i−1]−

d+1
2 ≤ Ĉd(n+ s)

√
b[λ(1− 1/bs)s]−

d+1
2 . (26)

Using the convexity of x 7→ (1− x)s, and then the fact that b ≥ 2, we get that

Ĉd(n+ s)
√
b[λ(1− 1/bs)i−1]−

d+1
2 ≤ Ĉd(n+ s)

√
b[λ(1− 1/b)]−

d+1
2 (27)

≤ Ĉd(n+ s)
√
b[λ/2]−

d+1
2 . (28)

The �nal inverse temperature parameter, which is smaller than all the intermediate ones, is

λ

(
1− 1

bs

)s

≥ λ

(
1− 1

b

)
, (29)
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by the same convexity argument, so that eventually, since the considered norms are increasing with λ,∥∥∥Qn,n+s(t)fn+s

∥∥∥
ε,n,λ−λ

b

≤
(
Cd(n+ s)

√
bλ−(d+1)

)s ∫
0≤ts≤···≤t1≤t

dt1 · · · dts∥fn+s∥ε,n+s,λ

≤
(
Cd

√
bλ−(d+1)

)s
(n+ s)s

ts

s!
∥fn+s∥ε,n+s,λ

≤
(
Cd

√
bλ−(d+1)

)s
en+s ts ∥fn+s∥ε,n+s,λ ,

where the factor s! comes from the imposed order of collision times ts ≤ · · · ≤ t1, and allows to control
the term (n+ s)s, concluding the proof. □

4.2 Pseudo-trajectories' adaptive tree pruning

Now, so as to work with collision trees of controlled sizes, we will simply consider truncated series
instead of our Dyson expansions (33). More precisely, for a �xed time t > 1 we will study how our
functionals behave on a well chosen cutting of the interval [0, t], and impose a maximal amount of
collisions on each small piece of this cutting. We thus divide the interval [0, t] into K ∈ N∗ little
pieces of sizes h1, . . . , hK respectively, backwards in time, starting from time t and going back to zero,
as pictured in Figure 2.

0

h1 h2 h3 h4 h5 h6 h7

t

Figure 2: Backwards division of the time interval under study

We will morally forbid more than 2 collisions per particle to happen in each small interval: at
the k-th time quantum of length hk, we want that at most 2k particles may have collided, as if we
were pruning the collision tree every time it becomes more than exponentially big. To get an explicit
formulation of this condition on the series expansion, we will write the Dyson series (15) between t
and t− h1, cut it after 2 collisions, then do it again between t− h1 and t− h2 after 2

2 collisions, and
eventually iterate this calculus K times: we denote the time steps

tpk = t−
k∑

j=1

hi, (30)

with the condition
K∑
i=1

hi = t, (31)

so that tpK = 0. So we write as in (15)

f
(1)
N (t) =

1∑
j1=0

Q1,1+j1(h1)f
(1+j1)
N (t− h1) +

∞∑
s=2

Q1,1+s(h1)f
(1+s)
N (t− h1) (32)

=
1∑

j1=0

· · ·
2K−1∑
jK=0

Q1,J1(h1)QJ1,J2(h2) . . . QJK−1,JK (hK)f
(JK)
N (0) (33)

+
K∑
k=1

1∑
j1=0

· · ·
2k−1−1∑
jk−1=0

Q1,J1(h1) . . . QJk−2,Jk−1
(hk−1)

∞∑
s=2k

QJk−1,Jk−1+s(hk)f
(Jk−1+s)
N (tpk), (34)
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denoting
JK

.
= 1 + j1 + · · ·+ jK . (35)

We hence introduce the following remainder, which corresponds to the pruned-out trajectories,

R[K](t)
.
=

K∑
k=1

1∑
j1=0

· · ·
2k−1−1∑
jk−1=0

Q1,J1(h1) . . . QJk−2,Jk−1
(hk−1)

∞∑
s=2k

QJk−1,Jk−1+s(hk)f
(Jk−1+s)
N (tpk). (36)

We will give estimates on the truncated series in the following section, but �rst we have to justify that
the remainder is small enough. This is the point of the following proposition, using the continuity
estimates of previous section, and improving greatly the results of [7, Proposition 4.3] by adapting
the time cutting (h1, . . . , hK). Since the chosen condition of a sub-exponential number of collisions is
very restrictive at �rst, and then gradually relaxed, the key point is to chose the cutting times small
at �rst and then progressively bigger.

Proposition 4.2.1 (Estimate of the pruned-out term). With the previous notation, for any α ∈
(0, 1/2) and K large enough satisfying t ≲ K

1
2
−α, a good choice of time cutting h = (h1, . . . , hK)

provides the following estimate ∥∥∥R[K](t)
∥∥∥
L∞(Dd)

≤ ∥ρ∥e−2K−Kα

. (37)

Proof. As f
(Jk−1+s)
N ∈ Fε,Jk−1+s,β by the bound (20) on its norm, the continuity estimate on the

successive-collision operators given in Proposition 4.1.1 asserts that for any hk small enough,
∞∑

s=2k

QJk−1,Jk−1+s(hk)f
(Jk−1+s)
N (tpk) ∈ Fε,Jk−1,β/2

with ∥∥∥∥∥
∞∑

s=2k

QJk−1,Jk−1+s(hk)f
(Jk−1+s)
N (tpk)

∥∥∥∥∥
ε,Jk−1,β/2

≤ eJk−1

∞∑
s=2k

(√
2Cdhk

β(d+1)/2

)s ∥∥∥f (Jk−1+s)
N (tpk)

∥∥∥
ε,Jk−1+s,β

≤ eJk−1

∞∑
s=2k

(√
2Cdhk

β(d+1)/2

)s

(Cβd/2)Jk−1+s∥ρ∥.

We now iterate k times Proposition 4.1.1 � like in the proof of this same proposition, downgrading
each time the norm by a factor 1− 1/2k so that the �nal inverse temperature, which is smaller than
all the intermediate ones, can be bounded in the following way by convexity of x 7→ (1− x)k:

β

2

(
1− 1

2k

)k

≥ β

2

(
1− 1

2

)
=

β

4
· (38)

This way, our k iterations of Proposition 4.1.1 � choosing b = 2k � allow us to write, grouping all the
terms appearing under the form eJi or (Cβd/2)Jk−1 together as a power of a constant C(β),∥∥∥∥∥Q1,J1(h1) . . . QJk−2,Jk−1

(hk−1)

∞∑
s=2k

QJk−1,Jk−1+s(hk)FJk−1+s(t
p
k)

∥∥∥∥∥
ε,1,β/4

(39)

≤ ∥ρ∥C(β)
∑k−1

i=0 Ji

(
√
2kCdh1

4(d+1)/2

β(d+1)/2

)j1

. . .

(
√
2kCdhk−1

4(d+1)/2

β(d+1)/2

)jk−1 ∞∑
s=2k

(√
2Cdhk√

β

)s

·
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Let us then observe that since Ji = 1 + j1 + · · ·+ ji, we have the following bound on

k−1∑
i=0

Ji ≤
k−1∑
i=0

(1 + 2 + · · ·+ 2i) ≤
k−1∑
i=0

2i+1 ≤ 2k+1.

Hence, since all of the weighted norms are greater than the L∞-norm, and up to a new constant C
depending only on d and β, we can write

∥∥∥R[K](t)
∥∥∥
L∞

≤ ∥ρ∥
K∑
k=1

C2k+1
1∑

j1=0

· · ·
2k−1−1∑
jk−1=0

(√
kCh1

)j1
. . .
(√

kChk−1

)jk−1
∞∑

s=2k

(Chk)
s . (40)

Let us henceforth tune our cutting times (h1, . . . , hK). We can see in the last equation that the

last sum � which will provide smallness � will be of order (Chk)
2k , so that if the �rst cutting times

need to be small, the following ones may get progressively bigger, as pictured in the following Figure 3.
Let us recall that this corresponds to the condition on a sub-exponential number of collisions being
less and less restrictive.

0

h1 hK· · ·

t

Figure 3: Backwards construction of the cutting times

More precisely, we de�ne for all 1 ≤ i ≤ K,

h̃i
.
=

e−2(K−K1−α−i)

2C
√
K

, (41)

so that by positivity, and then the fact that K − j ≥ K −K1−α, hence 2K−K1−α−(K−j) ≤ 1,

K∑
i=1

h̃i ≥
⌊K1−α⌋∑
j=0

h̃K−j

≥
⌊K1−α⌋∑
j=0

e−1

2C
√
K

≥ t,

since we required t ≲ K
1
2
−α. This way, we might rescale this cutting into

hi
.
=

t∑K
i=1 h̃i

h̃i ≤ h̃i, (42)

so that
K∑
i=1

hi = t. (43)

Let us observe that the loss due to the K1−α in the convergence rate is caused by the fact that we
have to cover an interval of length t that may go to in�nity. For any �nite value of t, this correction
is not needed anymore and we may hence get a convergence rate in e−2K , which would give a better
�nal estimate (see the discussion in Section 5.1).
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Eventually, for K large enough, the estimate (40) in the case of our cutting provides

∥∥∥R[K](t)
∥∥∥
L∞

≤ ∥ρ∥
K∑
k=1

C2k+1
k∏

i=1

2i−1∑
ji=0

(√
kChi

)ji ∞∑
s=2k

(Chk)
s (44)

≤ ∥ρ∥
K∑
k=1

C2k+1
k∏

i=1

2i−1∑
ji=0

(
1

2

)ji ∞∑
s=2k

(
e−2K−K1−α−k

2
√
K

)s

, (45)

so that bounding all of the k geometric series by 2, then harnessing the factor (
√
K)−2k to crush the

terms that blow up, we get as wanted

∥∥∥R[K](t)
∥∥∥
L∞

≤ ∥ρ∥
K∑
k=1

(
C2
)2k [ k∏

i=1

2

]
× 2

(
e−2K−K1−α−k

2
√
K

)2k

(46)

≤ ∥ρ∥
K∑
k=1

(
2C2

√
K

)2k (
e−2K−K1−α−k

)2k

(47)

≤ ∥ρ∥e−2K−K1−α

,

using at line (47) that 2k+1 ≤ 22
k
, and hence concluding the proof. □

4.3 Proof of the new convergence rate

Let us recall that g denotes the solution to the linear Rayleigh�Boltzmann equation given by (10)

and (11). We denote R
[K]
lim the pruned-out remainder of its Dyson expansion, exactly as for f

(1)
N in (34),

which satis�es easily the same estimate as the one given in Proposition 4.2.1. Now, the proximity of
the pruned trajectories may be written in the following proposition.

Proposition 4.3.1 (Proximity of the pruned trajectories). For any α ∈ (0, 1/2), there exists a

constant Cβ depending only on the temperature and on the dimension such that if t ≲ K
1
2
−α, and if

K and N = ε1−d are large enough, then∥∥∥(f (1)
N −R[K])− (g −R

[K]
lim)
∥∥∥
L∞([0,t]×Dd)

≤ Cβ
2K∥ρ∥ · | log ε|

3d−1
4 ε

d−1
2(d+1) . (48)

Proof. The complete proof of this proposition may be found in [7, Section 5], and follows from several
approximations: an energy truncation and a time separation are operated so as to be able to construct
a small set of bad collision parameters, which is such that out of this set one may consider that there
is no recollision. Hence, the proof is brought back to studying the initial error at time t = 0 and the
very small error due to the prefactors (N − n)εd−1.

The only improvement we bring to the original paper is the more precise estimate of the operators
Q1,J1(h1) . . . QJk−1,Jk(hk), which like in the proof of Proposition 4.2.1 induces a factor Cβ

2K , instead

of the original crude bound with |Q|1,Jk(t), which gave a factor (Cβt)
2K . Physically, we decompose

the time interval into small pieces whose lengths are adapted to the maximum number of particles
that may appear in them, so that the dynamics behaves similarly during each one of them. Hence, as
long as time does not get too big with respect to the number of pieces, none of the estimates depends
on the total time length.

Also note that we have taken into account a correction in the geometric estimate given in [7,
Proposition 5.1], which had been the subject of an erratum of [14] and merely changes the power of ε.

□
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We eventually obtain the following estimate of the convergence rate by tuning well our parameter
K, this way proving Theorem 3.1.

Proposition 4.3.2 (Final convergence estimate). There exists a constant cβ depending only on the

temperature and the dimension such that, for any α ∈ (0, 1/2), in the following scaling:

K =

⌊
log (2cβ| log ε|)

log 2

⌋
and t ≲ K

1
2
−α, (49)

one has this �nal convergence rate of the BBGKY distribution to the Rayleigh�Boltzmann distribution∥∥∥f (1)
N − g

∥∥∥
L∞([0,t]×Dd)

≤ ∥ρ∥ exp
(
−cβ |log ε|1−α

)
. (50)

Proof. Considering Cβ the constant given by Proposition 4.3.1, we choose

K =

⌊
1

log 2
log

(
(d− 1)| log ε|
4(d+ 1) logCβ

)⌋
, (51)

so that we can choose the small constant as

cβ
.
=

(d− 1)

8(d+ 1) logCβ
· (52)

In this scaling, one has precisely

Cβ
2K ≤ ε

1−d
4(d+1) , (53)

so that by Proposition 4.3.1,∥∥∥(f (1)
N −R[K])− (g −R

[K]
lim)
∥∥∥
L∞([0,t]×Dd)

≤ ∥ρ∥ · | log ε|
3d−1

4 ε
d−1

4(d+1) . (54)

Hence, the only remaining error term is the remainder given by the pruning process, and for our
scaling of K, Proposition 4.2.1 yields that, since K −Kα ≥ (1− α)K for K large enough,∥∥∥R[K]

∥∥∥
L∞([0,t]×Dd)

≤ ∥ρ∥e−2K−Kα

(55)

≤ ∥ρ∥e−2(1−α)K
, (56)

and eventually, writing

K ≥
log (2cβ| log ε|)

log 2
− 1 =

1

log 2
log (cβ| log ε|) , (57)

we get ∥∥∥R[K]
∥∥∥
L∞([0,t]×Dd)

≤ ∥ρ∥ exp
(
−cβ

1−α |log ε|1−α
)

(58)

≤ ∥ρ∥ exp
(
−min(cβ, 1) |log ε|1−α

)
, (59)

which is the biggest of both errors, concluding the proof. □
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5 Variants of the theorem with better convergence rates

5.1 Finite time

As mentioned in the proof of Proposition 4.2.1 (page 11), for any �nite time t, including t in the
constant cβ , one may get rid of the power 1 − α in Proposition 4.3.2, hence yielding a convergence
rate in ε−cβ in Theorem 3.1, although cβ becomes a worse constant as t increases.

5.2 Ideal Rayleigh gas

This method also works in the case of the ideal Rayleigh gas, studied for example in [23], and
consisting in the simpli�cation that only the tagged particle interacts with others. In our case, that
would greatly simplify the collision operators (17) de�ning the BBGKY hierarchy: the only remaining
term in the sum is i = 1.

In the end, after an identical computation, the continuity estimate (21) in Proposition 4.1.1 loses
its factor en, which was caused by the factor (n+ s)s. In the main bound of the successive-collision

operators, like (39), the very bad factor C2K simply becomes 2K , so that for any r > 0, the scaling

K = −r log ε

log 2
(60)

is enough to replace (51), making the pruned-out term in Proposition 4.2.1 merely of order less than

ε2, and the main error (48) of order ε
d−1

2(d+1)
−2r

.
In dimension d = 3, it thus provides a convergence rate in any power of ε less than 1/4, which is

very slightly better than the result in [23]. However, the signi�cant breakthrough in [23] consists in
their speci�c method allowing to consider times increasing like a power of ε instead of (12).
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